Sample Datasets

Note

For information on accessing the CAS Loss Reserving Database, see here.

trikit includes a number a sample loss datasets. As of the latest release, the following are available:

autoliab

Private passenger auto liability/medical coverages from 2004. Source: Frees, E., Regression Modeling with Actuarial and Financial Applications.

amw09

Sample loss dataset. Source: Alai, D.H. et. al., Mean Square Error of Predicition in the Bornhuetter-Ferguson Claims Reserving Method, Annals of Actuarial Science 4, I, 7-31 (2009).

glre

Reinsurance General Liability dataset from the 2001 Historical Loss Development Study published by the Reinsurance Association of America. Source: Frees, E., Regression Modeling with Actuarial and Financial Applications.

raa

Automatic Factultative business in General Liability provided by the Reinsurance Association of America. Source: Mack, Thomas (1993) Measuring the Variability of Chain Ladder Reserve Estimates, 1993 CAS Prize Paper Competition on Variability of Loss Reserves.

singinjury

Payments from a portfolio of automobile policies for a Singapore property and casualty insurer. Source: Source: Frees, E., Regression Modeling with Actuarial and Financial Applications.

singproperty

Incremental payments from a portfolio of automobile policies for a Singapore property and casualty insurer. Source: Source: Frees, E., Regression Modeling with Actuarial and Financial Applications.

ta83

Sample loss dataset. Source: G. C. Taylor and F. R. Ashe, Second moments of estimates of outstanding claims, Journal of Econometrics, 1983, vol. 23, issue 1, 37-61.

Sample datasets are accessed using trikit’s load function:

load(dataset, tri_type=None)

Load the specified sample dataset. If tri_type is not None, return sample dataset as specified triangle either “cum” or “incr”.

Parameters
  • dataset (str) – Specifies which sample dataset to load. The complete set of sample datasets can be obtained by calling get_datasets.

  • tri_type (str) – If None, lrdb subset is returned as pd.DataFrame. Otherwise, return subset as either incremental or cumulative triangle type. Default value is None.

Returns

Either pd.DataFrame, trikit.triangle.IncrTriangle or trikit.triangle.CumTriangle.

Pass any of the sample dataset names. For example, to load the amw09 dataset as a DataFrame, run:

In [1]: from trikit import load
In [2]: df = load("amw09")
In [3]: df.head()
Out[3]:
   origin  dev      value
0       0    0  5946975.0
1       0    1  3721237.0
2       0    2   895717.0
3       0    3   207760.0
4       0    4   206704.0

To return the awz09 sample dataset as a triangle of incremental losses, run:

In [4]: tri = load("amw09", tri_type="incr")
In [5]: tri
Out[5]:
          0         1       2       3       4       5      6      7      8      9
0 5,946,975 3,721,237 895,717 207,760 206,704  62,124 65,813 14,850 11,130 15,813
1 6,346,756 3,246,406 723,222 151,797  67,824  36,603 52,752 11,186 11,646    nan
2 6,269,090 2,976,233 847,053 262,768 152,703  65,444 53,545  8,924    nan    nan
3 5,863,015 2,683,224 722,532 190,653 132,976  88,340 43,329    nan    nan    nan
4 5,778,885 2,745,229 653,894 273,395 230,288 105,224    nan    nan    nan    nan
5 6,184,793 2,828,338 572,765 244,899 104,957     nan    nan    nan    nan    nan
6 5,600,184 2,893,207 563,114 225,517     nan     nan    nan    nan    nan    nan
7 5,288,066 2,440,103 528,043     nan     nan     nan    nan    nan    nan    nan
8 5,290,793 2,357,936     nan     nan     nan     nan    nan    nan    nan    nan
9 5,675,568       nan     nan     nan     nan     nan    nan    nan    nan    nan

Available sample datasets can be listed by calling get_datasets:

In [6]: from trikit import get_datasets
In [7]: get_datasets()
Out[7]: ['amw09', 'autoliab', 'glre', 'raa', 'singinjury', 'singproperty', 'ta83']